Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4872, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982040

RESUMO

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
2.
PLoS One ; 17(3): e0265486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298525

RESUMO

Periodontitis is one of the most common infectious diseases in humans. It is characterized by a chronic inflammation of the tooth-supporting tissue that results in bone loss. However, the role and source of the pro-inflammatory cytokine interleukin-17 (IL-17) and of the cells producing it locally in the gingiva is still controversial. Th17 αß T cells, CD4+ exFoxP3+ αß T cells, or IL-17-producing γδ T cells (γδ17 cells) seem to be decisive cellular players in periodontal inflammation. To address these issues in an experimental model for periodontitis, we employed genetic mouse models deficient for either γδ T cells or IL-17 cytokines and assessed the bone loss during experimental periodontal inflammation by stereomicroscopic, histological, and µCT-analysis. Furthermore, we performed flow-cytometric analyses and qPCR-analyses of the gingival tissue. We found no γδ T cell- or IL-17-dependent change in bone loss after four weeks of periodontitis. Apart from that, our data are complementary with earlier studies, which suggested IL-17-dependent aggravation of bone loss in early periodontitis, but a rather bone-protective role for IL-17 in late stages of experimental periodontitis with respect to the osteoclastogenicity defined by the RANKL/OPG ratio.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/patologia , Animais , Citocinas , Gengiva/patologia , Inflamação , Interleucina-17/genética , Camundongos
3.
Eur J Immunol ; 51(11): 2618-2632, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34398456

RESUMO

The epidermis of mouse skin is usually populated by dendritic epidermal T cells (γδDETC) expressing an invariant Vγ5Vδ1+ TCR. In Tcrd-/- mice, skin-resident γδDETC are replaced by αßDETC carrying polyclonal αß TCRs. Although they exhibit a dendritic morphology, αßDETC were reported to be less functional than genuine γδDETC, likely because their TCR is unable to interact with the original TCR ligands of γδDETC. However, the TCR repertoire of those replacement DETC in Tcrd-/- mice might provide clues for understanding the development and selection of canonical γδDETC. Here, we compare the phenotype and TCR repertoires of wild-type and Tcrd-/- mouse skin T cells. Our data reveal that αßDETC are CD4/CD8 double negative and express an MHC-independent TCR repertoire. Furthermore, we identify a second MHC-independent population of CD103hi CD4/ CD8 double-negative αß T cells in the dermis of Tcrd-/- mice.


Assuntos
Células Dendríticas/imunologia , Células Epidérmicas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Epiderme/imunologia , Camundongos , Camundongos Knockout
4.
Eur J Immunol ; 51(5): 1166-1181, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33638148

RESUMO

Foxp3+ Treg cells, which are crucial for maintenance of self-tolerance, mainly develop within the thymus, where they arise from CD25+ Foxp3- or CD25- Foxp3+ Treg cell precursors. Although it is known that infections can cause transient thymic involution, the impact of infection-induced thymus atrophy on thymic Treg (tTreg) cell development is unknown. Here, we infected mice with influenza A virus (IAV) and studied thymocyte population dynamics post infection. IAV infection caused a massive, but transient thymic involution, dominated by a loss of CD4+ CD8+ double-positive (DP) thymocytes, which was accompanied by a significant increase in the frequency of CD25+ Foxp3+ tTreg cells. Differential apoptosis susceptibility could be experimentally excluded as a reason for the relative tTreg cell increase, and mathematical modeling suggested that enhanced tTreg cell generation cannot explain the increased frequency of tTreg cells. Yet, an increased death of DP thymocytes and augmented exit of single-positive (SP) thymocytes was suggested to be causative. Interestingly, IAV-induced thymus atrophy resulted in a significantly reduced T-cell receptor (TCR) repertoire diversity of newly produced tTreg cells. Taken together, IAV-induced thymus atrophy is substantially altering the dynamics of major thymocyte populations, finally resulting in a relative increase of tTreg cells with an altered TCR repertoire.


Assuntos
Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Timo/patologia , Animais , Atrofia , Biomarcadores , Sobrevivência Celular/imunologia , Imunofenotipagem , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Infecções por Orthomyxoviridae/virologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timócitos/imunologia , Timócitos/metabolismo
5.
J Exp Med ; 215(12): 3006-3018, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30455268

RESUMO

γδ T cells are highly conserved in jawed vertebrates, suggesting an essential role in the immune system. However, γδ T cell-deficient Tcrd -/- mice display surprisingly mild phenotypes. We hypothesized that the lack of γδ T cells in constitutive Tcrd -/- mice is functionally compensated by other lymphocytes taking over genuine γδ T cell functions. To test this, we generated a knock-in model for diphtheria toxin-mediated conditional γδ T cell depletion. In contrast to IFN-γ-producing γδ T cells, IL-17-producing γδ T cells (Tγδ17 cells) recovered inefficiently after depletion, and their niches were filled by expanding Th17 cells and ILC3s. Complementary genetic fate mapping further demonstrated that Tγδ17 cells are long-lived and persisting lymphocytes. Investigating the function of γδ T cells, conditional depletion but not constitutive deficiency protected from imiquimod-induced psoriasis. Together, we clarify that fetal thymus-derived Tγδ17 cells are nonredundant local effector cells in IL-17-driven skin pathology.


Assuntos
Modelos Genéticos , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T gama-delta , Pele/imunologia , Células Th17/imunologia , Animais , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Pele/patologia , Células Th17/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...